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Abstract—Laminar natural convection along the outer surface of a vertical cylinder is compared with that
along a vertical flat plate on heat transfer. For any Prandtl number and for arbitrary vertical temperature
or heat flux distribution at the cylinder surface, local heat-transfer coefficients are represented non-

dimensionally by the following approximate formulae.
When surface temperature distributions are given,

X x
(Nuy), = (Nuy), + 0435 oo 5 07(Nu,),

and when surface heat flux distributions are given,

(Nu,), = (Nuy), + 0345 >,
T

n

»

x
P < 07 (Nuy),,

where (Nu,), and (Nu,), are the local Nusselt numbers for a cylinder and a flat plate respectively, x the
vertical distance from the leading edge, and r,, the radius of the cylinder.

NOMENCLATURE g, gravitational acceleration;

f(n, &,/ *(n*, £*), non-dimensional  stream H(0), thermal boundary value de-

functions defined in (29) fined by (44);

and (29) respectively ; M,N, arbitrary consfants in (10)
Jo(m), fE(n*®), basic stream functions of and (5) respectively ;

perturbation or stream m, n, arbitrary exponents in (10)

functions of similarity and (5) respectively;

transformation for a flat Nu,, Nusselt number defined by

plate, defined in (36) and 43);

(36) respectively; Nu,, a,x/A, local Nusselt num-
Fim, [, stream functions of the first ber;

perturbation, definedin(36) Pr, v/%, Prandtl number ;

and (36) respectively; s local heat flux at the heated
£, f3(n*), stream functions of the surface;

second perturbation, de- r, radial distance from the

fined in (36) and (36) re- cylinder axis;

spectively ; T radius of a cylinder;
Gr,, local Grashof number de- t, temperature ;

fined by (9); u,v, velocity components in x-
Gri, modified local Grashof and r-directions respec-

number defined by (14);
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tively;
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Greek symbols
&,

B,

3,
nn*,

0(n. &), O*(n*. &%),

Bo(n), B3(n*),

6(n), 05(n™),

0,(m), 63(n*),

Superscripts
x

k4
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vertical distance from the
leading edge of the heated
surface.

q./(t,.— t,), heat-transfer
coefficient ;

average volumetric thermal
expansion coefficient ;
thickness of the thermal
boundary layer along a flat
plate, defined by (15);
independent variables de-
fined by (31) and (31} re-
spectively ;
non-dimensional  temp-
erature profiles in the
boundary layer, defined by
(30) and (30 respectively.
basic temperature profiles
of perturbation or tempera-
ture profiles of similarity
transformation for a flat
plate, defined in (37) and
(37) respectively;
temperature profiles of the
first perturbation, defined
in (37} and (37) re-
spectively ;

temperature profiles of the
second perturbation, de-
fined in (37) and (37) re-
spectively ;

thermal diffusivity;
thermal conductivity ;
kinematic viscosity ;

perturbation parameters
defined by (7) and (12)
respectively ;

stream function defined in
(28).

for the case of given surface
heat flux;

'

, differentiation with respect

to n or n*,
Subscripts

¢, for a cylinder ;

D, for a flat plate;

X, local values at x;

w, conditions at the heated
surface;

o0, conditions in the ambient
fluid.

1. INTRODUCTION

ON THE study of laminar natural convection
along a vertical surface, theoretical analysis for a
flat plate is simple and exact. In case of its
experimentai verification, however, it is desirable
to use a vertical cylinder, in order to idealize the
experimental conditions and make the measure-
ments accurate. In this case, the radius of the
cylinder must be sufficiently large, because the
smaller is the radius, the larger is the heat
transfer coefficient in comparison with that for
a flat plate.

A number of solutions on the natural-convec-
tion boundary layer along a vertical cylinder
were reported, by Sparrow and Gregg [1]
and Hara [2] for uniform surface temperature
and Prandtl number of 0-72, 0-733 and 1, by
Mabuchi [3] and Fujii et al. [4] for uniform
surface heat flux and Prandtl number of 0-72,
1, 5, 10 and 100, and by Millsaps and Pohlhausen
[5] for uniform heat-transfer coefficient and
Prandtl number of 0-733, 1, 10 and 100. Such
simple thermal conditions as above appear
seldom in practice. Especially for the case of
uniform heat-transfer coefficient, it may be
valuable only that similarity solutions are
obtainable.

In this paper, it is attempted to reduce the
formula for calculating the coefficient of heat
transfer from the outer surface of a vertical
cylinder with arbitrary vertical temperature
or heat flux distribution to fluid of any Prandtl
number, when the coefficient of heat transfer
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from a flat plate with the same thermal con-
dition is known.

2. NUMERICAL SOLUTIONS AND
CONSIDERATIONS

The pertinent boundary layer equations of
continuity, motion and energy are respectively,

6(ru) 6(rv)
“ox | or

ou ou vo ([ oOu
ug;c'*‘vé;—gﬂ(t ty) + = o ( 6r) 2)
Yo% ”ar‘ ror\ or/

These equations must be solved under the
following boundary conditions.

=0, Y

G

ot
u=0 v=0, t=twor—15=qw,

at r=rm}(4)
u=0 t=t,, at r= oo,

where t, or q,, is an arbitrary function of x.
When ¢, or g,,is given by a power function of x
as shown in (5) or (10), these problems can be
solved by perturbation method. Since the
principle of this method is well known, the
ordinary differential equations reduced are
described in Appendix 1.
(i) Cases of given surface temperature distributions
Surface temperature distribution ¢, is assumed
as
t, — to

= Nx", 8]

where ¢, is uniform ambient fluid temperature,
and N, n are arbitrary positive constants. The
local Nusselt number is reduced from tem-
perature profile (30), (37) as

1(0)
85(0)

(Nuy), _
(Nu),

2(0)

méz +...,(6)

¢+

where perturbation parameter ¢, local Nusselt
number for a flat plate (Nu,), and local Grashof
number Gr, are defined respectively by,
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£ =2AYD=6rcH, v
_(x)px _ —65(0)
(Nux)p - '1 - \/2 G"; (8)
_ 3 +3
or, = 9t vz o) ¥ _ gﬂzxiazc" o

and 6;(0) is a thermal boundary value of equa-
tions (38), which are the basic equations of
perturbation for a cylinder and are also reduced
from similarity transformation of the boundary-
layer equations for a flat plate, and 8}(0), 8;(0)
are thermal boundary values of the first and
second perturbation equations (39), (40) re-
spectively. Some examples of these boundary
values computed with an electronic computer,
are shown in Table 1.
(i) Cases of given surface heat flux distributions
Surface heat flux distribution g,, is assumed as

= Mx™, (10)

where M and m are arbitrary positive constants.
The local Nusselt number is reduced from
temperature profile (30), (37) as

(N, _ [1 L 80, ] "

10) ,,
(Nu,), * 50) (1)

30)

where perturbation parameter ¢*, local Nusselt
number for a flat plate (Nu,), and modified
local Grashof number Gr¥ are defined respec-
tively by,

=2 x St X Gra-t, (12)
ry
(Nuy), = ! Grxt (13)
Y T Z5080) -
4 4+m
Gr» _9bax" _gpMx*" (14)

Av? v?

Some thermal boundary values 6%(0), 6%*(0)

and 0%(0) for the case of m = 0 are shown in
Table 2 [4].
(iii) Transformation by boundary-layer thickness
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Table 1. Thermal boundary values for the cases of given surface temperature
distribution

n Pr 05(0) 0,(0) 95{0) Symbols in Fig. 1
0 | -0s671  —0223%6 00250 @
0 100 -2:1910 —0-2254 00132 [}
o1 1 - (6093 {2255 00253 ®

In this paper, thickness of the thermal bound-
ary layer along a flat plate J is introduced as

_x

(Nu,
This is reduced when the hypothetical tempera-
ture profile in the boundary layer is linearly
approximated such that the gradient coincides
with the actual gradient at the heated surface.
By substituting (8), (7) and (13), (12) into (15),
the following relations are obtained respectively,

(15)

s &

. —20,0) (16)
o —030)¢&*
= (17

3

Figure 1 shows a plot of (Nu,)./(Nu,), vs.
&/r,,. Bach term is evaluated by (6), (16) and the
boundary values shown in Table 1 for given
surface temperature distribution, and by (11),
(17) and the boundary values shown in Table 2
for given surface heat flux distribution. In the
figure, for simplicity’s sake, only the values
corresponding to &, &* = (-5 are plotted.

Since both the cases ofn = lin{S)andm = 1
in (10) correspond to the case of uniform heat
transfer coefficient distribution, similarity solu-
tions by Millsaps and Pohlhausen [5] can be
transformed to the correlation terms in this

paper. Details of this transformation are de-
described in Appendix 2. The results are sum-
arized in Table 3, and inserted as two solid
lines in Fig. L.

Figure 1 exhibits that the correlation of
(Nu,)./(Nuy), vs. o/r, is scarcely affected by
Prandtl number and by arbitrary constants
N. M. n and m., which prescribe the shape of

— Similariy solution
~—= Perturbotion solution

x'r
~

(NU”)"~ _5_
) 1+0:435

. ——(gvven syrface temp)

3

X

(M) ~
(), 1+ 0345 -

{given surface heat flux}

Wu) /Wy }

10 { L i
0 o2 0-4 08
8 Lo
r, 7 a3,

o w

F1G. L. {Nu,)./(Nu,), the ratio of local Nusselt number for a
cylinder to that for a flat plate vs. 3/r,, the ratio of boundary
layer thickness for a flat plate to the radius of a cylinder.
Symbols correspond to those in Tables 1,2 and to £.£* = 0-5
respectively.

surface temperature or heat flux distribution.
By eliminating & from (16), (6) and £* from (17),
(11), the following formulae are reduced re-
spectively,

Table 2. Thermal boundary values for the case of uniform heat flux
distribution, namely for m = 0 in (10)

Pr *0) 6%(0) 6%(0) Symbols in Fig, 1
072 —14869 03710 —0-1140 I
1 ~ 13574 0-3100 —(-0865 O
5 ~09010 0-1396 00270 A
10 —~0-7675 0-1011 —0-0150 v
100 —~0-4656 00359 —~0-0026 .
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Table 3. Relation of (Nu,)/(Nu,), to 8/r,, for the case of uniform heat-transfer coefficient distribution

Given temperature

Given heat flux

N
Pr H(0) Nu, S, (Nuy), o, (Nuy,),
(Nuy, (Nuy,),
50 1-852 0-6991 1295 0-6604 1223
100 2127 0-5879 1-250 0-5611 1194
500 2978 0-3931 1171 0-3803 1133
0733 1000 3461 0-3306 1144 03214 1112
5000 4960 0-2211 1097 02167 1075
10000 5818 01859 1-082 01829 1064
50000 8479 0-1243 1-054 01227 1040
100000 10-000 0-1045 1-045 0-1037 1037
100 2316 0-5310 1-230 05087 1178
1 1000 3794 0-2986 1-133 02922 11109
10000 6407 01679 1-076 01652 1058
100000 1105 0-0944 1-043 00936 1034
100 4225 0-2656 1122 0-2599 1-098
10 1000 7164 0-1494 1-070 0-1476 1058
106000 12:38 0-0840 1-040 0:0834 1032
100000 2165 00472 1022 00470 1-018
100 7-466 01445 1079 01418 1059
100 1000 12:91 00813 1-049 0-802 1035
10000 22:59 00457 1032 0:0454 1026
100000 3956 00257 1016 00256 1013
(Nu L0 Nu o
S EL =1 — 20,(0)— (___"£= 1 —-0336—
(Nu,), Ty (Nu,), r,
5 2
+ 465(0) B,(00{—) + ..., (18) 5\ -1
T + 0139 = +...] . 21)
w.
(Nu). _ [, _20%0) 6
(Nuy), 0%%(0)r,, Formulae (20), (21) are inserted as two dotted

46%(0) [ 6\ -1
By substituting the boundary values corre-
sponding to n = 0 and Pr = 1 as the representa-
tive for the temperature distribution indicated
by (5) into (18), the following formula is obtained,

W o8 5\?
o)~ 1 +0447r——0057<—) + ... (20)

w rW
Similarly, from (19) the formula for m = 0 and
Pr = 1is obtained as

lines in Fig. 1.
(iv) Considerations

The difference between the two Nu, ratio
formulae (20) and (21) is caused by the difference
on the signification of (Nu,),/(Nu,), between
the cases of given surface temperature and heat

flux. For the case of given surface temperature
distribution,
because (tw — to)e = (ty — to)p

(N ux)c = (ax [ (qx)c
(N ux)p (ax)p (qx)p.

(22)

(23)
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On the other hand, for the case of given surface
heat flux distribution, because

(e = (d)pr

(Nux_ 3 _(a:c)c _(tw - tco)p
(Nux)p ——(ax)p ﬁ({'w - too)c .

The perturbation solutions inserted as dotted
lines agree well with the similarity solutions
inserted as solid lines in the range of smaller
d/r,. In larger d/r,, the latter seems to be more
accurate, because only two terms of perturbation
are adopted in the former. The similarity
solutions may be expressed approximately as
follows ;
for given surface temperature distribution,

24)

(25)

(Nuy), = (Nuy), + 0435 ;’5

W

;“’3 < 07(Nuy),,

(26)

for given surface heat flux distribution,

(N, = (Nuy), + 0:345 fﬁ

W

fﬂ < 07(Nuy),

@7

Although the ranges of &, £* or §/r,, applicable
to (6), (11) or (18),(19) depend on Prandtl number
as shown in Fig. 1 and Table 3, the ranges of
x/r,, in (26), (27) may be extended at least up
to 07 (Nu,), for any Prandtl number, since the
analytical data on each distribution are uniquely
correlated. By the way, in order to evaluate
(Nuy), for a cylinder from (26) and (27), (Nu,),
for a flat plate must be known. The method of
approximate estimation of (Nu,), is shown in
Appendix 3.

3. CONCLUSION

Heat-transfer coefficients on laminar natural
convection in fluid of Pr = 0-72 ~ 100 along
the outer surface of a vertical cylinder, the
temperature or heat flux distribution on which
was given as a power function of the vertical
distance, were treated. For these two cases,
(Nuy)/(Nu,), was uniquely correlated by J/r,,
respectively, where some data were calculated

and HARUO UEHARA

by perturbation method and some were referred
from literature.

Practical approximate solutions are recom-
mended by (26) and (27). These formulae are

probably appreciable to the convection from

a vertical cylinder with arbitrary vertical tem-
perature or heat flux distribution to the fluid
of any Prandtl number, because they are reduced
on the basis of the thermal boundary layer
thickness.
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APPENDIX 1

Perturbation equations
When the stream function  is introduced such that

18y
- (28)

continuity equation (1} is automatically satisfied. Non-
dimensional stream function and temperature profile in the
boundary layer £, 6, are introduced respectively such that

Yix, 1) = 2/ vr, Grif(n, &), 29
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t—

= &, 30
el (30)
where
rt -
= MM ‘.Gr* (31}
i L} T X
When r,, -+ oo, the independent variable 5 tends to
1 r—r
—=Gr? =, 32
N i (32)

which is equal to the similarity variable for a flat plate [6].
By substituting (28)(31) and (7) into (2)-(4), the following
equations and boundary conditions are obtained,
3f &f Pfof dfef
s+izg+ - D¢ i
oy 5*1 mdc on  on? oL

+(n+3)f5—2—2(n+1)(%) + 8 =0,

A +3am5

(33)

o8 {ofd8 80df
a +‘fﬂ)a’?2 5 Pf[(n‘l)g(ggg~(§g'a?)
00 ef
+(n+3)f57—4n0~a;]—0, (34)
of 9 4 4= -
f—-*a‘;r‘—aé—o, g = at =0, o
% =0=0, at n = o0
When f'and 6 may be expressed as follows;
1,8 = foln) + Efilm) + Eftm) + . (36)
85, &) = G} + E0m + PG + .., 37

by substituting (36), (37) into (33), (34) and equating the
coefficients of each power of ¢ identically to zero, the following
groups of ordinary differential equations are obtained,

T Em NS — 2+ DU 0= 38)
8 + Pri(n + 3)foB) — 4nf36,] =0,
U+ LS - Bn+ 5)fof) )
+4f5Hi+ 6 +nfd'+ fo=0
& + (n + ) Prfyf, — (3n + D) Preif, — 4nPr,f}

+ 4Prby fy + nbg + 6, =0, |
S+ 4 Dfof7 - 2An+3)fof2 ~ (=5 fof2
+0 +af! +f{ -+ NV + 41 =0,
8 + (n + 3) Prfyfy — 2n + 1) Prfi0, — 4nPro [
—(n = 5)Proyf, + nb + 6, — (3n + 1) Prf 16,
+ 4Prf 8, ==(),J

> (39)

> {40)

and boundary conditions are

613

fo=h=f=...=0

fo=fi=fr=..=0, }at n=0, (41)
By =1, 6 =6 =...=0

£ = e =0 3 .
JoTJ17J2 = at =0, 42)
90—01=92=...=0, }

where the primes denote differentiation with respect to 7.

Equations (38) are non-linear simultaneous equations
and equal to those reduced from similarity transformation of
the boundary layer equations for a flat plate [6]. /;, 6, and
their derivatives, together with unknown boundary values
S50} 6,(0), are solved by trial and error computation.
Since equations {39), (40) are linear, they are solved easily by
superposition method.

Similarly, are reduced the ordinary differential equations
for the case that the surface heat flux distribution is expressed
by (10). In this case, stream function, non-dimensional
temperature profile and independent variable are defined
respectively by

¥ = Stor Gredf+(n* &%), 25y
FHr*, 6% = ™) + 0™ + S0 + ... (36)
Mo =0 s = gy, £3), (30y
5tq.x
O%n*, &) = O%(n™) + 0™ + E¥705™) + ..., (BT
* rz - r‘z" *% (31)1
T =% Strx T

The basic ordinary differential equations and boundary
conditions, for example, are
= 0,
(38y

&+ m+ DS — Qm + N - 68
~{m+ 41651 = 0,
@ty

= 0 83' =
(42

where the primes denote differentiation with respect to n*,

85" — Pri(dm + 1OE 1Y

% = f%

at #g* =0,

=08 = at n* = co,

APPENDIX 2

Relation of (Nu,).[(Nu,), to 8/r,, reduced from the similarity
solutions by Milisaps and Pohlhausen

Similarity solutions of the boundary-layer equations along
a vertical cylinder are obtainable only for the distribution of
uniform heat-transfer coefficient, namely for 2 = 1 in (5}
or m = 1 in (10). These solutions were obtained by Millsaps
and Pohlhausen, and the Nusselt number Nu, was re-
presented by a parameter H(0) corresponding to a thermal
boundary value, where Nu, and H(0) are defined respectively
by
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e qw”w_
FETIr Yy

ar,,

N,

43

@Bt -t
L B

H(O) Ll
Xy

(44)

(Nu,). and &/r,, in this paper are expressed by these Nu,
and H(0) as follows; corresponding to n = 1 in (5},

(Nu), 2 Nu,

= ) 45
V), = G0 (RO @
5 J2
e 60 [HOW e
and corresponding to m = 1in (10},
(Nug), ~5¥G%5(0) Nu? @7
(Nug,  (HO}
5 _sigx
® 5*a50) (48)

re  {NwHOW

w

where 8,(0) and 0%(0) are thermal boundary values for a flat
plate with the same surface temperature or heat flux distri-
bution.

These values of 030} and 6}{(0) are exterpolated from the
numerical values of Nu, and H(0) by means of the following
physical relation respectively,

Nur - 96(0) at 1 0
- - F: e = (3
HOPE /2 (HO)}*
ﬁu‘%lﬁ,_ﬁs_*« at  — ,L..____ -0
(HOE - 6%(0) ‘Nu, HO

instead of direct solving the original differential equations.
The resuits are shown in Table 4.

By {45), (46) and 8,(0) or (47), (48) and 63(0), the relation
of (Nu,)./(Nu,), to é/r, are reckoned as shown in Table 3.

Table 4. Thermal boundary values for the case of uniform heat
transfer coefficient distribution on a flat plate

Pr 0-733 i 0 100
— 05L0) 0-7607 0-8422 1-6839 30954
— G50 1-1905 1-0971 0-6304 0-3871
APPENDIX 3

Local Nusselt number for a flat plate, the temperature or heat
Puxdistribution on which is given by(Syor (10} respectively

The local Nusselt numbers are determined by the thermal
boundary values of (38) and (38) as shown in (8} and {13).
When the surface temperature distribution s given by (5),
the surface heat flux distribution g,, is obtained as

HARUO UEHARA

G = —2INBHOYAGH X" T, (49}

and when the surface heat flux distribution is given by {10).
the surface temperature distribution is

~ SEMORO) AT Grr

Le—1t, =

#

{50}

where 8,(0} and 8§(0) are the same thermal boundary values
with those shown in Tables 1, 2 and 4.

Since each of the obtained heat flux and temperature
distribution (49), (50) is a power function of x, these two
cases must be physically identical. By equating (5) t (50)
and (10) to (49) respectively, following relations are reduced,

4m =51 ~ L.
—65(0) = (1 - 0501 2.

(5h
152)

If either 65(0) for a value of n or 0%(0) for a value of m is
solved, the other for the value of m or n exchanged by (51}
is obtained by {52). Since the boundary values for n = 0,
say [05(03],-0. were computed precisely by Ostrach {7]
for Pr = 0-01,0-72,0-733, 1. 2, 10. 100 and 1000, a plot of the
ratio 85(0)/[85(0)), o vs. n is attempted as shown in Fig. 2.
This figure exhibits that the boundary value ratios are
scarcely affected by Prandtl number. As to the value for
n =1 and Pr = 100, the convergency of the numerical data
at 1 — oo 18 somewhat doubtful.

For more precise evaluation, equation (38) must be solved
numerically. Then 65(0) shown in Fig. 2 and f3(0) given
by the following formula are recommended as the starting
values for the trial and error computation.

T30 = 0475 ~ 0667 log 5(0), 072 < Pr < 100.

[N-Ted
<>
i
,_,Q
S a
2 4
EDO
Ld
~
o 1ol — D Pr=0T72
@ > — O Pz
——-—= U Pr =100
-0 | | L | ]
o] 02 04 0-6 08 [Re]
n

F1G. 2. 600y (65(0)] =0 the ratio of the thermal boundary

value for arbitrary exponent n in (5) to that for n = 0 vs. n,

with respect to a flat plate. Data on n = 0-1 were computed
by authors and those on n = 0-5 were referred from [6].
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TRANSPORT DE CHALEUR PAR CONVECTION NATURELLE LAMINAIRE A PARTIR DE
LA SURFACE EXTERIEURE D’UN CYLINDRE VERTICAL

Résumé—La convection naturelle laminaire le long de la surface extérieure d’un cylindre vertical est
comparée, au point de vue transport de chaleur, avec celle le long d’une plaque plane verticale. Pour
n’importe quel nombre de Prandtl et pour une distribution verticale arbitraire de flux de chaleur ou de
température 4 la surface du cylindre, les coefficients de transport de chaleur local sont représentés de faJon
adimensionnelle par les formules approchées suivantes.

(i) ~ (N, = 04355, = < 07(Nu),
rw rW
et lorsque la distribution de flux de chaleur & la surface est donnée,
(Nuy), — (Nu), = 0345, =507 (Nuy),

ol (Nu,), et (Nu,), sont respectivement les nombres de Nusselt locaux pour un cylindre et une plaque
plane, x la distance verticale & partir du bord d’attaque et r le rayon du cylindre.

WARMEUBERGANG BEI LAMINARER FREIER KONVEKTION AN DER
AUSSENFLACHE EINES SENKRECHTEN ZYLINDERS

Zusammenfassung— Der Wirmeitbergang bei laminarer freier Konvektion an der Aussenfliche eines
senkrechten Zylinders wird mit dem an einer senkrechten ebenen Platte verglichen. Fiir beliebige Prandtl-
Zahlen und fiir beliebige Temperatur- oder Wirmestromverteilung lings der Zylinderoberflache lassen
sich die ortlichen Warmeiibergangskennzahlen dimensionslos darstellen nach folgenden Niherungs-
formeln.

Bei gegebener Oberflichentemperaturverteilung

(Vi) = (Nuy)y = 04355 X <07 (Nu);
und bei gegebener Wirmestromverteilung
(Nu, — (N, = 03452 < 507 (Nw);
w w

Dabei sind (Nw,), und (Nu,), die drtliche Nusseltzahlen fir Zylinder bzw. Platte, x der senkrechte Abstand
von Vorderkante und r der Radius des Zylinders.

TEIVIOOBMEH BHEIHEN INOBEPXHOCTU BEPTHKAJBLHOrO
HUJIUHAPA NPU JIAMUHAPHON ECTECTREHHON KOHBEKLIMH

Annoraiua—CpaBauBaercA TeIVIOOOMEH BepTHKAIBHOr0 UHIHHADA MpH  eCTeCTBEHHON
MAMMHAPDHONW KOHBEKINY C Tenj000MEeHOM BepTUHAILHON IIOCKOH NI3CTHHH, TOMeNnieHHoN
B aManoruvHmx ycaosusax. Ilpeacrasiensl B GespasMepHoM Bufe AUNPOKCHMHDYIOUHE
$opMynH AnA pacdeTa JOKANLHHIX Koa(PuuHeHTOB TemnooOMeHa OnA moOHX 3HAYSHHH
YmcIa Hpasdgran npousBOALHOro pacnpefelieHUs TeMIEPATYPH WM TEIIOBOTO HOTOKA MO
NOBEPXHOCTH UNJIMHAPA.

a) 3afaHO pacmpefeneHHe TEMIEPATYPHL HA TTOBEPXHOCTH

(Nuz)e = (Nuz)p+0,435 5 ;’i < 0,7(Nuz)p
w w
) sajaHo pacnpefeNeHne TEIIOBOTO MOTOKA M0 MOBEPXHOCTH
(Nuz)e = (Nuz)p+0,375 ri £ < 0,7(Nuz)p

rw
saech (Nuz)e u (Nuz)p—noxansuse ancaa Hycceanra mis LMJIMHADA ¥ NAOCKOR IIaCIUHEL,
COGTBETCTBEHHO! X-DACCTOAHME 110 BEPTHKANM OT MepefHelt KPOMKHUI ry-PafiuyCc UMAMHIPA.
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