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Abstract-Laminar natural convection along the outer surface of a vertical cylinder is compared with that 
along a vertical flat plate on heat transfer. For any Prandtl number and for arbitrary vertical temperature 
or heat flux distribution at the cylinder surface, local heat-transfer coefficients are represented non- 
dimensionally by the following approximate formulae. 

When surface temperature distributions are given, 

(ivu,), = (Nu,), + 0.435 ;, 
” 

; ,< 0.7 (Nu,),, 

and when surface heat flux distributions are given, 

(ivu,), = (IV&& + 0.345 5, + 5 0.7 (Nu& 
rv v 

where @Vu,), and (Nu,), are the local Nusseh numbers for a cylinder and a flat plate respectively, x the 
vertical distance from the leading edge, and I, the radius of the cylinder. 

NOMENCLATURE 
f(q, t),f*(q*, t*), non-dimensional stream 

Gr,, 

GC 

functions defined in (29) 
and (29)’ respectively ; 
basic stream functions of 
perturbation or stream 
functions of similarity 
transformation for a flat 
plate, defined in (36) and 
(36)’ respectively ; 
stream functions of the first 
perturbation, defined in (36) 
and (36)’ respectively ; 
stream functions of the 
second perturbation, de- 
fined in (36) and (36)’ re- 
spectively; 
local Grashof number de- 
fined by (9); 
modified local Grashof 
number defined by (14) ; 

607 

M, N, 

m, n, 

Nun 

Nu, 

r, 

I 

t,y 

u, v, 

gravitational acceleration ; 
thermal boundary value de- 
fined by (44) ; 
arbitrary consfants in (10) 
and (5) respectively ; 
arbitrary exponents in (10) 
and (5) respectively ; 
Nusselt number defined by 

(43); 
a,x/l., local Nusselt num- 
ber ; 
v/x, Prandtl number ; 
local heat flux at the heated 
surface ; 
radial distance from the 
cylinder axis ; 
radius of a cylinder ; 
temperature ; 
velocity components in X- 
and r-directions respec- 
tively ; 
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x. 

Greek symbols 
a, 

8, 

6, 

% v*, 

ebf. 5). e*b/*. 5”). 

z 
V, 

5, t*, 

Superscripts 
* 

vertical distance from the 
leading edge of the heated 
surface. 

q,,&-- t,), heat-transfer 
coefficient ; 
averagevolumetric thermal 
expansion coefhcient ; 
thickness of the thermal 
boundary layer along a flat 
plate, defined by (15) ; 
independent variables de- 
fined by (31) and (3 1)’ re- 
spectively ; 
non-dimensional temp- 
erature profiles in the 
boundary layer, defined by 
(30) and (30)’ respectively. 
basic temperature profiles 
ofperturbation or tempera- 
ture profiles of similarity 
transformation for a flat 
plate, defined in (37) and 
(37)’ respectively ; 
temperature profiles of the 
first perturbation, defined 
in (37) and (37)’ re- 
spectively ; 
temperature profiles of the 
second perturbation, de- 
fined in (37) and (37)’ re- 
spectively ; 
thermal diffusivity ; 
thermal conductivity ; 
kinematic viscosity ; 
perturbation parameters 
defined by (7) and (12) 
respectively ; 
stream function defined in 

(28). 

for the case of given surface 
heat flux ; 

differentiation with respect 
to q or q*. 

Subscripts 
c, 

P? 
x, 

M’, 

00, 

for a cylinder ; 
for a flat plate ; 
local values at x ; 
conditions at the heated 
surface ; 
conditions in the ambient 
fluid. 

1. IIWRODUCI’ION 

ON THE study of laminar natural convection 
along a vertical surface, theoretical analysis for a 
flat plate is simple and exact. In case of its 
experimental verification, however, it is desirable 
to use a vertical cylinder, in order to idealize the 
experimental conditions and make the measure- 
ments accurate. In this case, the radius of the 
cylinder must be sufficiently large, because the 
smaller is the radius, the larger is the heat 
transfer coefficient in comparison with that for 
a flat plate. 

A number of solutions on the natural-convec- 
tion boundary layer along a vertical cylinder 
were reported, by Sparrow and Gregg [l] 
and Hara [2] for uniform surface temperature 
and Prandtl number of O-72, O-733 and 1, by 
Mabuchi [3] and Fujii et al. [4] for uniform 
surface heat flux and Prandtl number of @72, 
1,5,10 and 100, and by Millsaps and Pohlhausen 
[5] for uniform heat-transfer coefficient and 
Prandtl number of 0.733, 1, 10 and 100. Such 
simple thermal conditions as above appear 
seldom in practice. Especially for the case of 
uniform heat-transfer coefficient, it may be 
valuable only that similarity solutions are 
obtainable. 

In this paper, it is attempted to reduce the 
formula for calculating the coefficient of heat 
transfer from the outer surface of a vertical 
cylinder with arbitrary vertical temperature 
or heat flux distribution to fluid of any Prandtl 
number, when the coefficient of heat transfer 
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from a flat plate with the same thermal con- 
dition is known. 

2. NUMERICAL SOLUTIONS AND 
CONSIDERATIONS 

The pertinent boundary layer equations of 
continuity, motion and energy are respectively, 

%4 + a(4 o 

ax ar=¶ 
U~+V~=g/3(t-tm)+f~ rg , 

( > 
(2) 

at at x a at 
%+% “75 ‘ar ( > 

(3) 

These equations must be solved under the 
following boundary conditions. 

u=O, u=O, t=t,or -lp=qW, 

at r =rw (4) 

u = 0, t = t,, at r=co, I 

where t, or CJ,,, is an arbitrary function of x. 
When t, or q,,, is given by a power function of x 

as shown in (5) or (lo), these problems can be 
solved by perturbation method. Since the 
principle of this method is well known, the 
ordinary differential equations reduced are 
described in Appendix 1. 
(i) Cases of given surface temperature distributions 

Surface temperature distribution t, is assumed 
as 

t, - t, = NY’, (5) 

where t, is uniform ambient fluid temperature, 
and N, n are arbitrary positive constants. The 
local Nusselt number is reduced from tem- 
perature profile (30), (37) as 

where perturbation parameter 5, local Nusselt 
number for a flat plate (NC& and local Grashof 
number Gr, are defined respectively by, 

(7) 

(Nu_J, = b)? = 9 Gr$, (8) 

s&v - L,) x3 = gBNx”+’ 
Grx = ,,2 v2 ’ (9) 

and &(O) is a thermal boundary value of equa- 
tions (38), which are the basic equations of 
perturbation for a cylinder and are also reduced 
from similarity transformation of the boundary- 
layer equations for a flat plate, and PI(O), G(O) 
are thermal boundary values of the first and 
second perturbation equations (39), (40) re- 
spectively. Some examples of these boundary 
values computed with an electronic computer, 
are shown in Table 1. 
(ii) Cases of given surface heat flux distributions 

Surface heat flux distribution q,,, is assumed as 

qw = Mx”, (10) 

where M and m are arbitrary positive constants. 
The local Nusselt number is reduced from 
temperature profile (30)‘, (37)’ as 

(Nu,),= -1 

(Nu3, 411) 

where perturbation parameter <*, local Nusselt 
number for a flat plate (NQ, and modified 
local Grashof number Gr,* are defined respec- 
tively by, 

(12) 

1 
(NuJ~ = _ s*(z);(O) Gr,**, 

Gr,* -gyv.x4 -g~~$+m. 

(13) 

(14) 

Some thermal boundary values e;(O), e:(O) 
and e,*(O) for the case of m = 0 are shown in 
Table 2 [4]. 
(iii) Transformation by boundary-layer thickness 
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Table 1. Thermal boundary ualuesfor the cases ojgiuen surface temperature 
d~stribufion 

__.-I__~ _j_ 
n Pr ego1 8; (0) 0, Symbols in Fz 

0 1 -0.567t -0.2236 0.0250 
0 100 -2.1910 - 0.2254 0.0132 $ 
0.1 I -0.6093 -02255 0.0253 0 

-~~__l____- -2- 

In this paper, thickness of the thermal bound- paper. Details of this transformation are de- 
ary layer along a flat plate 6 is introduced as described in Appendix 2. The results are sum- 

6 = (NZ ) 

arized in Table 3, and inserted as two solid 
~. (15) lines in Fig. 1. 

This is reduced when the i;]rPpothetical tempera- 
Figure 1 exhibits that the correlation of 

ture profile in the boundary layer is linearly 
UVu,),/(Nu,), vs. 6/r, is scarcely affected by 

approximated such that the gradient coincides 
Prandtl number and by arbitrary constants 

with the actual gradient at the heated surface. 
N. M. p7 and m. which prescribe the shape of 

By substituting (8), (7) and (131, (12) into (15), 
the following relations are obtained respectively, 

_ = - WO) 5* 6 

2 * 
(17) 

I, 

Figure 1 shows a plot of (~~~)~/(~~~)~ vs. 
6/r,. Each term is evaluated by (61, (16) and the 
boundary values shown in Table 1 for given 
surface temperature distribution, and by (llf, 
(17) and the boundary values shown in Table 2 
for given surface heat flux dist~bution. In the 
figure, for simplicity’s sake, only the values 
corresponding to t, {* = 05 are plotted. 

Since both the cases of la = 1 in (5) and m = 1 
in (IO) correspond to the case of uniform heat 
transfer coefficient distribution, similarity solu- 
tions by Millsaps and Pohlhausen (51 can be 
transformed to the correlation terms in this 

FIG. 1. (Nu~k/(~u~~~ the ratio of local Nusselt number for a 
cylinder to that for a flat plate vs. 6/r, the ratio of boundary 
layer thickness for,a flat plate to the radius of a cylinder. 
Symbols correspond to those in Tables 1.2 and to &<* = 0.5 
respectively. 

surface tem~rature or heat flux distribution. 
By eliminating < from (16), (6) and <* from (17), 
(1 l), the following formulae are reduced re- 
spectively, 

Table 2. Therms bounty values for &he case of uniform heat frux 
distribution, namely for m = 0 in (10) 

- 

Pr @(Q et(o) 4(O) Symbols in Fig. 1 

0.72 - I.4869 0.3710 -0.1140 C 
1 - 1.3574 0.3100 - 0.0865 0 
5 -0M10 O-1396 -0.0270 n 

1: - - 0.7675 0.4656 0.1011 0.0359 -0.0150 -00026 V 
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Table 3. Relation of (Nu,)J(Nu,), to 6/r, for the case of uniform heat-transfer coefficient distribution 

Given temperature Given heat flux 

PT H(O) Nur (Nu,), 
ww __ 

(Nu,), 

(Nu,), 
w, __ 

(NuJ, 

50 1.852 06991 1.295 0.6604 1.223 
100 2.127 0.5879 1.250 0.5611 1.194 
500 2.978 0.393 1 1.171 0.3803 1.133 

0.733 1000 3461 0.3306 1.144 0.3214 1.112 
5000 4.960 0.2211 1.097 0.2167 1.075 

10000 5.818 0.1859 1.082 0.1829 1.064 
50000 8.479 0.1243 1.054 0.1227 1.040 

100000 1OQOO 0.1045 1.045 0.1037 1.037 

100 2.316 0.5310 1.230 0.5087 1.178 
1 1000 3.794 0.2986 1.133 0.2922 1.109 

10000 6407 0.1679 1.076 0.1652 1,058 
100000 11.05 0.0944 1.043 @0936 1.034 

100 4.225 0.2656 1.122 0.2599 1.098 
10 1000 7.164 0.1494 1.070 0.1476 1.058 

10000 12.38 0.0840 1.040 O-0834 1.032 
100000 21.65 0.0472 1.022 00470 1.018 

100 7.466 0.1445 1.079 01418 1.059 
100 1000 12.91 0.0813 1.049 0802 1.035 

10000 22.59 0.0457 1.032 0.0454 1.026 
100000 39.56 0.0257 1.016 @0256 1.013 

(WA _ 1 _ 2WO) 6 -- 
Wu3, G2(0) rw 

+$qy + . ..I-‘. (19) 

By substituting the boundary values corre- 
sponding to n = 0 and Pr = 1 as the representa- 
tive for the temperature distribution indicated 
by (5) into (18), the following formula is obtained, 

WuxL _ 
WuJp 

1+0447p-0.057 . . . (20) 
W 

Similarly, from (19) the formula for m = 0 and 
Pr = 1 is obtained as 

Wdc _ 
WJ, 

1 - 0.3364 
W 

+ 0.139 (,;y + . ..I-‘. (21) 

Formulae (20), (21) are inserted as two dotted 
lines in Fig. 1. 
(iv) Considerations 

The difference between the two Nu, ratio 
formulae (20) and (21) is caused by the difference 
on the signification of (Nu.&(Nu,), between 
the cases of given surface temperature and heat 
flux. For the case of given surface temperature 
distribution, 

because 
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On the other hand, for the case of given surface 
heat flux distribution, because 

WC = (4& (24) 

The perturbation solutions inserted as dotted 
lines agree well with the similarity solutions 
inserted as solid lines in the range of smaller 
S/r,. In larger 6,/r, the latter seems to be more 
accurate, because only two terms of ~rturbation 
are adopted in the former. The similarity 
solutions may be expressed approximately as 
foiiows ; 
for given surface temperature distribution, 

(Nu,), = @vu,), + 0*435;, -y 5 0.7 (NU&’ 
W YW 

(26) 

for given surface heat flux distribution, 

(Nu,), = (Nu,), -I- 0.345 ; 
W 

; ,< 0.7 (Nu,), 
W 

(27) 

Although the ranges of 4, c$* or 6/r, applicable 
to (6), (11) or (la), (19) depend on Prandtl number 
as shown in Fig. 1 and Table 3, the ranges of 
x/r, in (26), (27) may be extended at least up 
to 0.7 (Nu,), for any Prandtl number, since the 
analytical data on each distribution are uniquely 
correlated. By the way, in order to evaluate 
(NJ& for a cylinder from (26) and (27), (NuJ, 
for a flat plate must be known. The method of 
approximate estimation of (Nu,), is shown in 
Appendix 3. 

3. CONCLUSION 

Heat-transfer coefficients on laminar natural 
convection in fluid of Pr = @72 N 100 along 
the outer surface of a vertical cylinder, the 
temperature or heat flux distribution on which 
was given as a power function of the vertical 
distance, were treated. For these two cases, 
(iV&‘(Nu& was uniquely correlated by 6/r, 

respectively, where some data were calculated 

and HARUO UEHARA 

by perturbation method and some were referred 
from literature. 

Practical approximate solutions are recom- 
mended by (26) and (27). These formulae are 
probably appreciable to the convection from 
a vertical cylinder with arbitrary vertical tem- 
perature or heat flux distribution to the fluid 
of any Prandtl number, because they are reduced 
on the basis of the thermal boundary layer 
thickness. 
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APPENDIX 1 

P~turb~t~o~ equine 
When the stream function J/ is introduced such that 

1 all, u=--, 
r ar 

J,,= _!Z 
r ax’ 

continuity equation (1) is automati~lly satisfied. Non- 
dimensional stream function and temperatun: pro&lie in the 
boundary layer I; 0, are introduced respectively such that 

$(x, r) = 2(J2) vr, Grkfh 51, (29) 
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t - t, 
- = e(tt, 0, 
tlv - tm 

(30) 

where 

r”-r”, G* 
n = 2(J2)r,x rx* 

(31) 

When r, + 00, the independent variable q tends to 

-!_ Grt !-?!, 
42 x 

(32) 

which is equal to the similarity variable for a flat plate [6]. 
By substituting (2Qol) and (7) into (2)-(4), the following 
equations and boundary conditions are obtained, 

(l+~~~~+~~+(~-l~~ &@x-g-@ 
( 

a2f a_f ayaf 

) 

+(n+3)f$-2(n+1) ; z+h=O, 
(> 

(33) 

(1 + &)$ 
ae ” afae 

+kpr (n-l)< 
c ( 

aeaf -- ~~-aTa9 > 

f(n+3)~~-4&- =o, af 
aq arl 1 (34) 

f - af - af -y&--g=o, B=i, at r) = 0, 1 . _ 

af&d_) 
(35) 

all ’ 
at tf = co. 

When f and 0 may be expressed as follows ; 
m 0 = Ids) + im + mf9) + *, 9 (36) 

@@I, r) = @I&?) + &i,(n) -I- CZ@2eJ~ -I- . * *, (37) 
by substituting (36), (37) into (33), (34) and equating the 
coefficients ofeach power of i: identically to rero, the following 
groups of ordinary differential equations are obtained, 

fS’ f (n + 3)f;;fo - (2n + 2)(.f$ + B. = 0, 

fi, + Pr[(n + 3jfoBb - 4nr&f = 0, i 
(38) 

f Y + (n + 3)&f;” - (3n f 5).&f\ 
+ 4fb’fi + 6, + r&6’ + f; = 0, 

8;’ + (n $3) Prf,B; - (3n + 1) Prf& - 4nPr 6&f; 

i 

(39) 

+ 4Prebfi + t&i $ e0 = 0, 

.K •k (n + 3)f, f; - 4n -t 3)fhf; - (n - 5)f;dfa ’ 

+ 0, + 12f;’ +f;’ - (?z + 3)(&)2 + 4s’;f = 0, 

G f (n 4 3)prf,B; - 2(n + l)Prf& - 4nfit&fz 

~ 

(40) 

- (n - 5)Pr0& + ~0; + rV, - (38 + i)Ptf;O, 

+ rzPrf,B; = 0, 

. . . . . . . . . . . . . . . . 
and boundary conditions are 

f. =f, =f2 =...==o 

fb=f;=f;=.,.=o, at 0 = 0, (41) 

8, = 1, 01 = ez = . . _ = 0, 

f; =f; Sf6 = . . . = 0, 

I 
at ? = m, (42) 

e, = e1 = e2 = . . = 0, 

where the primes denote differentiation with respect to 7. 
Equations (38) am non-linear simultaneous equations 

and equal to those reduced from similarity ~~sfo~ation of 
the boundary layer equations for a flat plate [6]. fO, 8, and 
their derivatives, together with unknown boundary values 
f;(O), &JO), are solved by trial and error computation. 
Since equations (39), (40) are linear, they are solved easily by 
su~~osi~on method. 

Similarly, are reduced the ordinary differential equations 
for the case that the surface heat flux distribution is expressed 
by (10). In this case, stream function, nondimensional 
temperatum profile and independent variable are defined 
respectively by 

Jr = S*vr,,.Gr*f*(q*, <*) > 

f*ol*, t*) = fo(‘l*) + 5*f :h:, -I- C*%(tl*) + . . ., 

(29Y 
(36) 

(30) 

@*(q*. r*) = e:(t)*) + 5*ey(q*) + ~ze:(~*) + . . . , (37) 

rz - r2 
(31) 

The basic ordinary diverse equations and boundary 
conditions, for example, are 

f$“’ + (m I- 4)f +ofg” - (2m + 3) (fo*‘)’ - tit: = 0, 

1 
(38)’ 

t?$” - Pr[(4m + 1) egjy - (m + 4)f ;eg = 0, 

fg = f Q’ = 0, eg’ = 1, at ‘f* =_O, (41) 

f*o’ f e+, = 0, at rj*=00, (42~ 

where the primes denote differentiation with respect to t)*, 

APPENDIX 2 
Relation of (Nu,)J(Nu,), to S/r, reduced from the similarity 
so&ions by Millsaps and Pohlhausen 

Similarity solutions of the bonds-lair equations along 
a vertical cylinder are obtainable only for the distribution of 
uniform heat-transfer coefficient, namely for ti = 1 in (5) 
or m = 1 in (10). These solutions were obtained by Millsaps 
and Pohlhausen, and the Nusselt number Ny. was re- 
presented by a parameter H(O) corresponding to a thermal 
boundary value, where Nu? and H(0) are defined respectively 

by 



614 TETSU FUJII and HARUO UEHARA 

(431 
q.+ = -2+N#h(O) AGr$x”- ’ ‘, (49) 

and when the surface heat flux distribution is given by (f0). 

H(O) = 
sior;tct, - t,) the surface temperature distribution is 
-F- .YV 

144) 
I,. -. t, = - 55MfI,*(O) I- ‘Ge *.Y”‘* ‘+ (50) 

(Nu& and s/r, in this paper am expressed by these Nu, 
and H(O) as follows; corresponding to n = 1 in (51. 

where f&(O) and ffT;(O) are the same thermal boundary values 
with those shown in Tables I, 2 and 4. 

(Nu,), J2 Nur Since each of the obtained heat tlux and temperature 
I__= 
(Nu,), -J&(O) {H(o)j*’ 

(45) distribution (491 (50) is a power function of .y, these two 
cases must be physically identical. By equating (5) to (50) 

d 
-zz J2 and (10) to (49) respectively, following relations are reduced, 

-f&(O) i w8)” 
(46) 

L’ 4m = 5n - 1. (51) 
and corresponding to m = 1 in ( 10). 

(47) 

W 

where eO(0) and 0$(O) are thermal boundary values for a flat 
plate with the same surface temperature or heat flux distri- 
bution. 

These values of ~~(0) and @z(O) are exterpolated from the 
numerical values of Nu, and H(0) by means of the following 
physical relation respectively. 

Nu, -4(O) 1 

@Tp’--- J-2 
at _I__ 

f H(O))* 
-+ 4 

-ego) = (gp{ -o,corj- z. 1521 

If either t&(O) for a value of n or H;(O) for a value of no is 
solved, the other for the value of m or n exchanged by (51) 
is obtained by (52). Since the boundary values for n = 0. 
say r~*{O)]~=~, were computed precisely by Ostrach [7] 
for Pr = 0~01.0~72.0~733. 1. 2, 10. 100 and 1000, a plot of the 
ratio @O(0)/[flO(O)l,,, vs. n is attempted as shown in Fig. 2. 
This figure exhibits that the boundary value ratios are 
scarcely affected by Prandtl number. As to the vaIue for 
n = 1 and Pr = 100, the convergency of the numericai data 
at q + CC IS somewhat doubtful. 

For more precise evaluation, equation (38) must be solved 
numerically. Then @s(O) shown in Fig. 2 and f;(O) given 
by the following formula are recommended as the starting 
values for the trial and error computation. 

.f’i(O) = 0475 - 0667 log cro(O,, 0.72 < Pr < t(K). 

instead of direct solving the original differential equations. 
The results are shown in Table 4. 

By (45), (46) and go(O) or {47), (48) and es(O), the relation -? 
of (Nu,J,l(Nu,), to 6/r, are reckoned as shown in Table 3. g ,_4 

-D” 
Table 4. Thermal boundary valuesfir the case ofuniform heat 7 

tr~n~~er c~e~c~ent ~is~~ibutio~ on afrat plate 6 
- t-2 

- D Pr=0.72 

PI 0,733 1 10 - 100 -b" - 0 PI=! 
____-._I-_--._._ . ..-- -_ ~~__._._ .._.~_ ._ 

-Ho(O) 07607 0.8422 1.6839 3.0954 I.0 
-e*,(o) 1.1905 1.0971 0.6304 0.3871 0 0.2 04 O-6 

__- " 

FIG;. 2. ~*~O~/[~~~O)J~=~ the ratio of the thermal boundary 
value for arbitrary exponent n in (5) to that for M = 0 vs. n, 

APPENDIX 3 with respect to a flat plate. Data on n = 0.1 were computed 

Local Nusselt numberfor aflat plate, the temperature or heat by authors and those on n = 05 were referred from [6]. 

~~~istr~butj~~on~hi~ isgiuenby(5)or(IOfrespectivefy 
The local Nusselt numbers are determined by the thermal 

boundary values of (38) and (38)’ as shown in (8) and (13). 
When the surface temperature distribution is given by (5), 
the surface heat flux distribution qw is obtained as 



LAMINAR NATURAL-CONVECTIVE HEAT TRANSFER 615 

TRANSPORT DE CHALEUR PAR CONVECTION NATURELLE LAMINAIRE A PARTIR DE 
LA SURFACE EX’l%RIEURE D’UN CYLINDRE VERTICAL 

R&urn&--La convection naturelle laminaire le long de la surface exterieure dun cylindre vertical est 
comparee, au point de vue transport de chaieur, avec cefle le long dune plaque plane vertieale. Pour 
n’importe quel nombre de Prandtl et pour une distribution verticale arbitraire de flux de chaieur ou de 
temperature a la surface du cylindre, les coefficients de transport de chaleur local sont represent&s de faron 
adimensionnelle par les formules approchees suivantes. 

flvM,L - (%f, = 4435 ;, ; a 97 (=GJ, 

et lorsque la distribution de tlux de chaleur a la surface est don&e, 

0t.r (Nu& et (NIc,!, sont r~~vement les nombres de Nusselt loeaux pour un ~Iind~ et une plaque 
plane, .x la distance vet&ale B pa&r du bord d’attaque et r ie rayon du cyhndre. 

WARMEUBERGANG BE1 LAMINARER FREIER KONVEKTION AN DER 
AUSSENF~CHE EINES SENKRECHTEN ZYLINDERS 

Zusammenfassung-Der Warmeubergang bei laminarer freier Konvektion an der Aussenfl&che eines 
senkrechten Zyhnders wird mit dem an einer senkrechten ebenen Platte verglichen. Fi%r beliebige Prandtl- 
Zahlen und fiir beliebige Temperatur- oder Wirmestromverteilung kings der Zylinderoberfllche lassen 
sich die Brtiichen Warmeiibergangskennzahlen dimensionslos darstellen nach folgenden Nlherungs- 
formeln. 

Bei gegebener Ober~~chentem~raturverteiiun~ 

(Nu,), - (Nu,), = 0,435;; 

und bei gegebener Warmestromverteihmg 

; $ 47 (Nu); 

(Nff,), - (Nz& = 0,345;; ; 5 097 (Nu) ; 

Dabei sind (Nu,), und (Nu$ die Grtliche Nusseltr&len fiir Zyhnder bzw. Platte, x der senkrechte Abstand 
von Vorderkante und T der Radius des Zylinders. 

TEITJIOOEMEH RHEfiIHE$i HOREPXHOCTH REPTMKAJIbHOr0 
IJBJIHHJJPA IIPLI. JIAMItHAPHOfl ECTECTREHHOM HOHBEIcIJtfH 

AEEOTsqHJr-CpaBHllBaeTcn TennOOdMeH BepTMKaHbHOrO 4HJlHHRpa HpH eCTeCTBoHHO$i 
JIaMkIHapHOH HOHBeKHHU c Tenaoo6MeHoM BopTHKaJIbHofi HJrOcKOti nJIacwnbr, nomemennoti 
a a~a~or~qH~x yc~on~~x. ~pa~CTaE~a~~ B 6eapaaMepHOM BHB.0 a~~poK~HM~py~4B~ 
i#Op~ysfBt znH paCYeTa .xOKaBbHMX KOB~~~~~OHTOB Ta~~oo6MeHa ,rrjrfi nro6~rx anaseuatt 
Uucna ITpaumas npoMaBonbHor0 pacnpeaeneawfr venfneparypff Mmi frenjIoBor0 noToHa II0 
IlOBep’XHOCTH HHJHiH~pa. 

a) aagario pacnpeaeaeHHe Tehineparypbt Ha HoBepxHocTH 

6) sagano pac~peue~eH~e TenjToBoro noToua no noeepxnocTrf 

3Aecb (Nuz)e H (NU&-HoKa.nbHble Buena Nyccenbra AJIB 4HsuHRpa A nnocKo# nBaccHH6I, 
COOTBeTCTBoHHOi’ X-paCCToMHHe no BepTHKaJHi OT RopegfiBH KpOMKM’i r,-prysUryC HHnMHgpa. 


